Precalculus Formulas
Algebra
-
Quadratic Formula:\(x=\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)
-
Special Factoring Properties:\(x^2-y^2=(x+y)(x-y)\)\((x-y)^2=x^2-2xy+y^2\)\((x+y)^2=x^2+2xy+y^2\)\(x^3-y^3=(x-y)(x^2+xy+y^2)\)\(x^3+y^3=(x+y)(x^2-xy+y^2)\)
-
Logarithm Properties:\(y=\log_a(x) => a^y = x\)\(\log_a(xy) = \log_a(x) + \log_a(y)\)\(\log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y)\)\(\log_a(x^r) = r \log_a(x)\)\(a^{\log_a(x)} = x\)\(\log_a(a^x) = x\)\(\log_a(1) = 0\)\(\log_a(a) = 1\)\(\log(x) = \log_{10}(x)\)\(\ln(x) = \log_e(x)\)\(\log_b(u) = \frac{\log_a(u)}{\log_a(b)} \)
-
Radical Properties:\(a^ma^n=a^{m+n} \)\((a^m)^n=a^{mn}\)\((ab)^n=a^{n}b^n\)\((\frac{a}{b})^n=\frac{a^n}{b^n}\)\(\frac{a^m}{a^n}=a^{m-n}\)\(a^{-n}=\frac{1}{a^n}\)\(a^{\frac{1}{n}}=\sqrt[n]{a}\)\(a^{\frac{m}{n}}=\sqrt[n]{a^m}\)\(a^{\frac{m}{n}}=(\sqrt[n]{a})^m\)\(\sqrt[n]{ab}=\sqrt[n]a\sqrt[n]b\)\(\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]a}{\sqrt[n]b}\)\(\sqrt[m]{\sqrt[n]{a}}=\sqrt[mn]a\)
Trigonometry
-
Right Triangles:\(\sin (\theta) = \frac{opp}{hyp}\), \(\csc (\theta) = \frac{hyp}{opp}\)\(\cos (\theta) = \frac{adj}{hyp}\), \(\sec (\theta) = \frac{hyp}{adj}\)\(\tan (\theta) = \frac{opp}{adj}\), \(\cot (\theta) = \frac{adj}{opp}\)
-
The Law of Sines:\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
-
The Law of Cosines:\(a^2=b^2+c^2-2bc\cos A\)\(b^2=a^2+c^2-2ac\cos B\)\(c^2=a^2+b^2-2ab\cos C\)
-
Pythagorean Identity:\(\sin^2(x) + \cos^2(x) = 1\)\(1+\tan^2(x) = \sec^2(x)\)\(1+\cot^2(x) + \csc^2(x)\)
-
Sum and Difference Formulas:\begin{equation}\small\sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b)\end{equation}\begin{equation}\small\cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b)\end{equation}
-
Double Angle Formulas:\(\sin(2x) = 2\sin(x)\cos(x)\)\(\cos(2x) = \cos^2(x) - \sin^2(x)\)
-
Trigonometric Identities:\(\sin(x)\csc(x)=1\)\(\cos(x)\sec(x)=1\)\(\tan(x)\cot(x)=1\)\(\tan(x)=\frac{\sin(x)}{\cos(x)}\), \(\cot(x)=\frac{\cos(x)}{\sin(x)}\)
-
Hyperbolic Definition:\(\sinh (x) = \frac{e^x -e^{-x}}{2}\)\(\cosh (x) = \frac{e^x +e^{-x}}{2}\)\(\tanh (x) = \frac{\sinh (x)}{\cosh (x)}\)\(\coth (x) = \frac{\cosh (x)}{\sinh (x)}\)\(\operatorname{sech}(x) = \frac{1}{\cosh (x)}\)\(\operatorname{csch}(x) = \frac{1}{\sinh (x)}\)
-
Hyperbolic Identities:\(\sinh (-x) = -\sinh (x)\)\(\cosh (-x) = \cosh (x)\)\(\cosh^{2}(x) - \sinh^{2}(x) = 1\)\(1-\tanh^{2} (x) = \operatorname{sech^2}(x)\)\begin{equation}\small \sinh (x+y) = \sinh x\cosh y + \cosh x \sinh y\end{equation}\begin{equation}\small\cosh (x+y) = \cosh x\cosh y + \sinh x\sinh y\end{equation}
-
Interactive Unit Circle:Angle: 0°sin(θ) = 0cos(θ) = 1tan(θ) = 0
Geometry
-
Pythagorean Theorem:\(c^2 = a^2 + b^2\)
-
Square:\(A = s^2\)\(C=4s\)
-
Rectangle:\(A = lw\)\(C=2l+2w\)
-
Triangle:\(A = \frac{1}{2}bh\)\(C=a+b+c\)
-
Circle:\(A = \pi r^2\)\(C=2\pi r\)
-
Cube:\(V = s^3\)\(S=6s^2\)
-
Rectangle Prism:\(V = lwh\)\(S=2(lw+wh+hl)\)
-
Cone:\(V = \frac{1}{3}\pi r^2 h\)\(S=\pi r(r+\sqrt{h^2+ r^2})\)
-
Sphere:\(V = \frac{4}{3}\pi r^3\)\(S=4\pi r^2\)
-
Distance Formula:\(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)
-
Equation of a Circle:\((x - h)^2 + (y - k)^2 = r^2\)
-
Slope-intercept form of a Line:\(y = mx + b\)
-
Point-slope form of a Line:\(y - y_1 = m(x - x_1)\)
Calculus Formulas
Limit
-
Ways to Solve Limit:
- 1.Direct Substitution
- When possible, substitute the value of x directly into the function to evaluate the limit.
- Example: \(\lim_{x\to 2}{3x+4} = 3(2)+4=10\)
- 2. Factoring
- Factor the expression to simplify it, especially when you encounter indeterminate forms like \(\frac{0}{0}\).
- Example: \begin{split}\lim_{x\to 2}{\frac{x^2 -4}{x-2}} & = lim_{x\to 2}{\frac{(x-2)(x+2)}{x-2}}\\ & =lim_{x\to 2}{x+2}=4\end{split}
- 3. Rationalizing
- Rationalize the numerator or denominator if there are square roots to eliminate indeterminate forms like \(\frac{0}{0}\).
- Example: \(\lim_{x\to 0}{\frac{\sqrt{x+1} -1}{x}}\). Multiply numerator and denominator by \(\sqrt{x+1}+1\)
- 4. L'Hopital's Rule
- Use L'Hopital's Rule when limits result in indeterminate forms \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\). Differentiate the numerator and denominator separately.
- Example: \(\lim_{x\to 0}{\frac{\sin x}{x}}\).
Apply L'Hopital's Rule:
\(f(x)=\sin x =>f'(x)=\cos x\)
\(g(x)=x=>g'(x)=1\).
\(\lim_{x\to 0}{\frac{\cos x}{1}}=1\)
- 5. Squeeze Theorem
- Use Squeeze Theorem when the function is "squeezed" between two other functions that have the same limit.
- Example: \(\lim_{x\to 0}{x^2\sin {\frac{1}{x}}}=0\).
Since \(-x^2\leq x^2 \sin {\frac{1}{x}} \leq x^2\)
-
- 6. Dominant Term for Infinity Limits
- When \(x\rightarrow\infty\), focus on the dominant term (the highest power of x) in the numerator and denominator.
- Example: \(\lim_{x\to \infty}{\frac{3x^2+5x}{2x^2-x}}=\lim_{x\to \infty}{\frac{3+\frac{5}{x}}{2-\frac{1}{x}}}=\frac{3}{2}\)
- 7. Trigonometric Limits
- Key limits to memorize:
- \(\lim_{x\to 0}{\frac{\sin x}{x}}=1\)
- \(\lim_{x\to 0}{\frac{\cos x -1}{x}}=0\)
- \(\lim_{x\to 0}{\frac{1-\cos x}{x^2}}=\frac{1}{2}\)
- 8. Logarithmic and Exponential Limits
- Use properties of logarithms and exponentials to simplify limits:
- \(\lim_{x\to 0^+}{\ln(x)} =-\infty\)
- \(\lim_{x\to \infty}{e^x}=\infty\)
- \(\lim_{x\to -\infty}{e^x}=0\)
- 9. Change of Variables
- Use substitution to simplify complicated expressions. Often used when dealing with limits approaching infinity or zero.
- Example: \(\lim_{x\to \infty}{\frac{1}{x}}\)
- Let \(u =\frac{1}{x}\)
- So \(\lim_{x\to \infty}{\frac{1}{x}}=\lim_{u\to 0}{u}=0\)
- 10. Limits at Infinity: Horizontal Asymptotes
- For rational functions \(\frac{P(x)}{Q(x)}\), where \(P(x)\) and \(Q(x)\) are polynomials:
- If degrees of numerator and denominator are equal: the limit is the ratio of leading coefficients.
- If the degree of numerator is higher: the limit is \(\infty\) or \(-\infty\).
- If the degree of denominator is higher: the limit is 0.
-
- 11. Limits with Piecewise Functions
- Check limits from both sides (left and right-hand limits). If they agree, that is the limit.
- Example: For a piecewise function \begin{gather*}lim_{x\to a^-}{f(x)}= lim_{x\to a^+}{f(x)}=L\\ lim_{x\to a}{f(x)}=L\end{gather*}
-
Limit Definition:\begin{gather*}lim_{x\to a^-}{f(x)}= lim_{x\to a^+}{f(x)}=L\\ lim_{x\to a}{f(x)}=L\end{gather*}\begin{gather*}if\hspace{0.3cm}lim_{x\to a^-}{f(x)}\neq lim_{x\to a^+}{f(x)}\\lim_{x\to a}{f(x)}=undefined\end{gather*}
-
Sum Rule:\begin{equation}{\small lim_{x\to a}{f(x)+g(x)}=lim_{x\to a}f(x)+lim_{x\to a}g(x)}\end{equation}
-
Difference Rule:\begin{equation}{\small lim_{x\to a}{f(x)-g(x)}=lim_{x\to a}f(x)-lim_{x\to a}g(x)}\end{equation}
-
Product Rule:\begin{equation}{\small lim_{x\to a}{f(x).g(x)}=lim_{x\to a}f(x).lim_{x\to a}g(x)}\end{equation}
-
Quotient Rule:\(lim_{x\to a}{\frac{f(x)}{g(x)}}=\frac{lim_{x\to a}f(x)}{lim_{x\to a}g(x)}\)
Derivatives
-
Basic Rule:\(\frac{d}{dx}(c) = 0\)\(\frac{d}{dx}(x) = 1\)\(\frac{d}{dx}(cf(x)) = c\frac{d}{dx}(f(x))\)\(\frac{d}{dx}(f(x)+g(x)) \\= f'(x)+g'(x)\)\(\frac{d}{dx}(f(x)-g(x)) \\= f'(x)-g'(x)\)
-
Power Rule:\(\frac{d}{dx}(x^n) = nx^{n-1}\)
-
Product Rule:\(\frac{d}{dx}(f(x).g(x)) \\= f'(x)g(x)+f(x)g'(x)\)
-
Quotient Rule:\(\frac{d}{dx}(\frac{f(x)}{g(x)}) \\= \frac{f'(x)g(x)-f(x)g'(x)}{(g(x))^2}\)
-
Chain Rule:\(\frac{d}{dx}(f(g(x))) = f'(g(x))g'(x)\)
-
Derivatives of Trigonometric Functions:\(\frac{d}{dx}(\sin x) = \cos x\)\(\frac{d}{dx}(\cos x) = -\sin x\)\(\frac{d}{dx}(\tan x) = \sec^2 x\)\(\frac{d}{dx}(\cot x) = -\csc^2 x\)\(\frac{d}{dx}(\sec x) = \sec x\tan x\)\(\frac{d}{dx}(\csc x) = -\csc x\cot x\)
-
Exponential Rule:\(\frac{d}{dx}(e^x)=e^x\)\(\frac{d}{dx}(e^{f(x)})=e^{f(x)}.f'(x)\)\(\frac{d}{dx}(a^{f(x)})=ln(a).a^{f(x)}.f'(x)\)
-
Logarithm Rule:\(\frac{d}{dx}(\ln(x))=\frac{1}{x}\)\(\frac{d}{dx}(\ln{f(x)})=\frac{1}{f(x)}f'(x)\)\(\frac{d}{dx}(\log_a(x))=\frac{1}{x\ln(a)}\)\(\frac{d}{dx}(\log_a{f(x)})=\frac{1}{f(x)\ln(a)}f'(x)\)
-
Derivatives of Inverse Trigonometric Functions:\(\frac{d}{dx}(\sin^{-1} (u)) = \frac{u'}{\sqrt{1-u^2}}\)\(\frac{d}{dx}(\cos^{-1} (u)) = \frac{-u'}{\sqrt{1-u^2}}\)\(\frac{d}{dx}(\tan^{-1} (u)) = \frac{u'}{1+u^2}\)\(\frac{d}{dx}(\cot^{-1} (u)) = \frac{-u'}{1+u^2}\)\(\frac{d}{dx}(\sec^{-1} (u)) = \frac{u'}{|u|\sqrt{u^2 -1}}\)\(\frac{d}{dx}(\csc^{-1} (u)) = \frac{-u'}{|u|\sqrt{u^2 -1}}\)
-
Derivatives of Hyperbolic Functions:\(\frac{d}{dx}(\sinh (x)) = \cosh (x)\)\(\frac{d}{dx}(\cosh (x)) = \sinh (x)\)\(\frac{d}{dx}(\tanh (x)) = \operatorname{sech^2}(x)\)\(\frac{d}{dx}(\coth (x)) = -\operatorname{csch^2}(x)\)\(\frac{d}{dx}(\operatorname{sech}(x)) = -\operatorname{sech}(x)\tanh(x)\)\(\frac{d}{dx}(\operatorname{csch}(x)) = -\operatorname{csch}(x)\coth(x)\)
Integrals
-
Power Rule:\(\int x^n dx = \frac{x^{n+1}}{n+1} + C\)
-
Sum/Difference Rule:\(\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx\)
-
Integration by Substitution:\(\int f(g(x))g'(x) dx = \int f(u) du\)
-
Integration by Parts:\(\int u dv = uv - \int v du\)
-
Integrals of Trigonometric Functions:
- \(\int \sin x dx = -\cos x + C\)
- \(\int \cos x dx = \sin x + C\)